Resources

History for 3D printing

Release time:2020-04-01

1981 : Early additive manufacturing equipment and materials were developed in the 1980s.[6] In 1981, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter.[7][8]

1984 : On 16 July 1984, Alain Le Méhauté, Olivier de Witte, and Jean Claude André filed their patent for the stereolithography process.[9] The application of the French inventors was abandoned by the French General Electric Company (now Alcatel-Alsthom) and CILAS (The Laser Consortium).[10] The claimed reason was "for lack of business perspective".[11]

Three weeks later in 1984, Chuck Hull of 3D Systems Corporation[12] filed his own patent for a stereolithography fabrication system, in which layers are added by curing photopolymers with ultraviolet light lasers. Hull defined the process as a "system for generating three-dimensional objects by creating a cross-sectional pattern of the object to be formed,".[13][14] Hull's contribution was the STL (Stereolithography) file format and the digital slicing and infill strategies common to many processes today.

1988: The technology used by most 3D printers to date—especially hobbyist and consumer-oriented models—is fused deposition modeling, a special application of plastic extrusion, developed in 1988 by S. Scott Crump and commercialized by his company Stratasys, which marketed its first FDM machine in 1992.

AM processes for metal sintering or melting (such as selective laser sintering, direct metal laser sintering, and selective laser melting) usually went by their own individual names in the 1980s and 1990s. At the time, all metalworking was done by processes that we now call non-additive (casting, fabrication, stamping, and machining); although plenty of automation was applied to those technologies (such as by robot welding and CNC), the idea of a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape with a toolpath was associated in metalworking only with processes that removed metal (rather than adding it), such as CNC milling, CNC EDM, and many others. But the automated techniques that added metal, which would later be called additive manufacturing, were beginning to challenge that assumption. By the mid-1990s, new techniques for material deposition were developed at Stanford and Carnegie Mellon University, including microcasting[15] and sprayed materials.[16] Sacrificial and support materials had also become more common, enabling new object geometries.[17]

1993 : The term 3D printing originally referred to a powder bed process employing standard and custom inkjet print heads, developed at MIT in 1993 and commercialized by Soligen Technologies, Extrude Hone Corporation, and Z Corporation.

The year 1993 also saw the start of a company called Solidscape, introducing a high-precision polymer jet fabrication system with soluble support structures, (categorized as a "dot-on-dot" technique).

1995: In 1995 the Fraunhofer Institute developed the selective laser melting process.

2009: Fused Deposition Modeling (FDM) printing process patents expired in 2009.[18]

As the various additive processes matured, it became clear that soon metal removal would no longer be the only metalworking process done through a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape layer by layer. The 2010s was the first decade in which metal end use parts such as engine brackets[19] and large nuts[20] would be grown (either before or instead of machining) in job production rather than obligately being machined from bar stock or plate. It is still the case that casting, fabrication, stamping, and machining are more prevalent than AM in metalworking, but AM is now beginning to make significant inroads, and with the advantages of design for additive manufacturing, it is clear to engineers that much more is to come.

As technology matured, several authors had begun to speculate that 3D printing could aid in sustainable development in the developing world.[21][22]

2013: NASA employees Samantha Snabes and Matthew Fiedler[23] create first prototype of large-format, affordable 3D printer, Gigabot, and launch 3D printing company re:3D.[24]

2018: re:3D develops a system that uses plastic pellets that can be made by grinding up waste plastic.[25]

We Chat: Venus
We Chat: Venus
We Chat: Nicole
We Chat: Nicole
We Chat: Phil
We Chat: Phil

Get In Touch or Get A Quote

+86-755-29667661 Moble,What's app, Wechat: (+86) 18675501860 Rfq@idmould.com/Info@idmould.com