Compression molding process definition,characteristics,schematic

Release time:2018-08-20

Process definition[edit]

Compression molding is a forming process in which a plastic material is placed directly into a heated metal mold, then is softened by the heat, and forced to conform to the shape of the mold as the mold closes.once molding is completed excess Flash are removed, in-order to get the best finish.

Process characteristics[edit]

The use of thermoset plastic compounds characterizes this molding process from many of the other molding processes. These thermosets can be in either preform or granule shapes. Unlike some of the other processes we find that the materials are usually preheated and measured before molding. This helps to reduce excess flash. Inserts, usually metallic, can also be molded with the plastic. As a side note, remember not to allow any undercuts on the shape, it will make ejection especially difficult. Thermoplastic matrices with an inherent indefinite shelf-life and shorter cycle moulding times are widely used and examples are shown in Ref 3.

Process schematic[edit]

Compression molding is one of the oldest manufacturing technique for rubber molding. The process parameters includes molding time, temperature, and pressure. Usually, a 300-400 ton clamp pressure is used. The typical mold is shaped like a clam shell. The molding press looked a lot like a ladle filled vertical press used for casting aluminum. The bottom of the mold was always the cavity. Compression molding used preforms made by an extruder/wink cutter or a roller die/die cutter. Wink meaning that 2 blades meet on center to cut the extrudate to length. For example; Molding water bottles used die cut sheets from a roller die. The sheet was 3 inch by 6 inch. The first sheet was placed- one below a core and one sheet of equal size above the core, and then the top of the mold lowered by hand or by hoist to near shut. The mold was then pushed into the press. The start button hydraulically closed the vertical press to full pressure. The mold temperature was about 350 degrees. The platens of the presses were steam heated. When the cycle ended (about 3.5-4.0 Minutes) the press would open and the mold would be pulled out toward the operator. The operator would pry to open the clam shell mold top, and then lean the top of the mold back against the press. Exposed is the bottle with the core still inside. While the bottle was still hot the operator would insert prongs like reverse pliers in between the bottle rubber and the steel core. The operator would then stretch the bottle at the neck over the core to free the bottle. In preparation of compression molding baby nipples and golf ball centers the preforms were extruded. The baby nipple was a kidney shape about 2 inches tall and 1/2 inch wide in the middle. The golf ball center preform had a 1 x 1 inch round slug. Both slugs were designed to stand up in the mold cavity. During the cycle the operator would load the jig with slugs. When the mold is opened, the lower platen would lower and the mold would be hydraulically pushed ou to the operator. Therein, the heat sheet (all molded parts from that cycle were joined together by a parting line rind (flash)) were placed in a transfer cart. The next cycle began by the jig being put over the mold. The slide tray was pulled and the preforms were released into the cavity of the mold. The start button moved the lower platen back into the press and the cure cycle bagan again. Therein the first cycle was complete. Each operator ran an average of 4 presses. Loading an unload was done during the cycle. The heat sheets removed from the mold were then transported to a die station. The die out station would remove the rind leaving the finished parts. With the evolution of compression molding, next was injection transfer. Basically the extruder was made part of the molding cycle. The rubber was injected into an upper heated platen station, and then pressure was applied to transfer molten rubber to the clamped mold. The design of injection transfer and improved molds were more so plastic injection molding except the platens and molds of injection transfer are heated. In contrast plastic Injections molding shoots a hot plastic into a cold mold.